
Package: ggpointdensity (via r-universe)
September 13, 2024

Type Package

Title A Cross Between a 2D Density Plot and a Scatter Plot

Version 0.1.0

Description A cross between a 2D density plot and a scatter plot,
implemented as a 'ggplot2' geom. Points in the scatter plot are
colored by the number of neighboring points. This is useful to
visualize the 2D-distribution of points in case of
overplotting.

URL https://github.com/LKremer/ggpointdensity

BugReports https://github.com/LKremer/ggpointdensity/issues

License GPL-3 | file LICENSE

Encoding UTF-8

LazyData true

Depends R (>= 3.2)

Imports ggplot2

Suggests viridis, dplyr

Repository https://lkremer.r-universe.dev

RemoteUrl https://github.com/lkremer/ggpointdensity

RemoteRef HEAD

RemoteSha 4c6fec024432f5ab4beb21b7b22a41ce02b627cd

Contents

geom_pointdensity . 2

Index 5

1

https://github.com/LKremer/ggpointdensity
https://github.com/LKremer/ggpointdensity/issues

2 geom_pointdensity

geom_pointdensity A cross between a scatter plot and a 2D density plot

Description

The pointdensity geom is used to create scatterplots where each point is colored by the number of
neighboring points. This is useful to visualize the 2D-distribution of points in case of overplotting.

Usage

geom_pointdensity(mapping = NULL, data = NULL,
stat = "pointdensity", position = "identity",
..., na.rm = FALSE, show.legend = NA,
inherit.aes = TRUE)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer, as a string.
position Position adjustment, either as a string, or the result of a call to a position adjust-

ment function.
... Other arguments passed on to layer(). This includes adjust, a multiplicate

bandwidth adjustment used to adjust the distance threshold to consider two
points as neighbors, i.e. the radius around points in which neighbors are counted.
For example, adjust = 0.5 means use half of the default. Other arguments may
be aesthetics, used to set an aesthetic to a fixed value, like shape = 17 or size =
3. They may also be parameters to the paired geom/stat.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

geom_pointdensity 3

Author(s)

Lukas P.M. Kremer

References

https://GitHub.com/LKremer/ggpointdensity

Examples

library(ggplot2)
library(dplyr)
library(ggpointdensity)

generate some toy data
dat <- bind_rows(

tibble(x = rnorm(7000, sd = 1),
y = rnorm(7000, sd = 10),
group = "foo"),

tibble(x = rnorm(3000, mean = 1, sd = .5),
y = rnorm(3000, mean = 7, sd = 5),
group = "bar"))

plot it with geom_pointdensity()
ggplot(data = dat, mapping = aes(x = x, y = y)) +

geom_pointdensity()

adjust the smoothing bandwidth,
i.e. the radius around the points
in which neighbors are counted
ggplot(data = dat, mapping = aes(x = x, y = y)) +

geom_pointdensity(adjust = .1)

ggplot(data = dat, mapping = aes(x = x, y = y)) +
geom_pointdensity(adjust = 4)

ggplot(data = dat, mapping = aes(x = x, y = y)) +
geom_pointdensity(adjust = 4) +
scale_colour_continuous(low = "red", high = "black")

I recommend the viridis package
for a more useful color scale
library(viridis)
ggplot(data = dat, mapping = aes(x = x, y = y)) +

geom_pointdensity() +
scale_color_viridis()

Of course you can combine the geom with standard
ggplot2 features such as facets...
ggplot(data = dat, mapping = aes(x = x, y = y)) +

geom_pointdensity() +
scale_color_viridis() +
facet_wrap(~ group)

4 geom_pointdensity

... or point shape and size:
dat_subset <- sample_frac(dat, .1) # smaller data set
ggplot(data = dat_subset, mapping = aes(x = x, y = y)) +

geom_pointdensity(size = 3, shape = 17) +
scale_color_viridis()

Zooming into the axis works as well, keep in mind
that xlim() and ylim() change the density since they
remove data points.
It may be better to use `coord_cartesian()` instead.
ggplot(data = dat, mapping = aes(x = x, y = y)) +

geom_pointdensity() +
scale_color_viridis() +
xlim(c(-1, 3)) + ylim(c(-5, 15))

ggplot(data = dat, mapping = aes(x = x, y = y)) +
geom_pointdensity() +
scale_color_viridis() +
coord_cartesian(xlim = c(-1, 3), ylim = c(-5, 15))

Index

aes(), 2
aes_(), 2

borders(), 2

fortify(), 2

geom_pointdensity, 2
ggplot(), 2

layer(), 2

stat_pointdensity (geom_pointdensity), 2
StatPointdensity (geom_pointdensity), 2

5

	geom_pointdensity
	Index

